BioDot's core compentency in low volume non-contact dispensing is supported by a number of patents:
A reagent dispensing apparatus is provided including a positive displacement syringe pump in series with a solenoid valve dispenser. The pump is controlled by a stepper motor or the like to provide an incremental quantity or continuous flow of reagent to the solenoid valve dispenser. The solenoid valve is opened and closed in a predetermined frequency and duty cycle to dispense droplets of reagent onto a target substrate at the metered flow rate.
A reagent dispensing valve particularly adapted for dispensing precise microfluidic quantities of fluids. The valve includes a valve portion and a solenoid actuator that are in fluid isolation from one another. The valve portion includes a plunger and seat combination and the actuator is substantially decoupled from the fluid path through the valve. The fluid path through the valve is substantially non-tortuous, thereby minimizing localized fluid pressure drops, and hence undesirable gaseous bubble precipitation within the fluid. The valve is also configured to substantially prevent bubble accumulation. The valve can further include a bubble trap for trapping and removing bubbles.
A reagent dispensing apparatus is provided including a positive displacement syringe pump in series with an air brush dispenser. The pump is controlled by a stepper motor or the like to provide incremental or continuous flow of reagent to the air brush dispenser. The air brush dispenser mixes the predetermined incremental quantity or continuous flow of reagent with pressurized air to atomize the reagent and produce an aerosol spray pattern which coats the substrate.
A method and apparatus for dispensing precise quantities of reagents is disclosed including a positive displacement syringe pump in series with a dispenser, such as an aerosol dispenser or solenoid valve dispenser. The pump is controlled by a stepper motor or the like to provide an incremental quantity or continuous flow of reagent to the dispenser. The pump and dispenser are operated in cooperation with one another such that the quantity and/or flow rate of liquid dispensed by the dispenser can be precisely metered substantially independently of the particular operating parameters of said dispenser to attain a desired flow rate, droplet size or mist quality, droplet frequency and/or droplet velocity.
The present invention relates to a ceramic tip and a random access print head for the transfer of microfluidic quantities of fluid. The print head can randomly collect and deposit fluid samples to transfer the samples from a source plate to a target. The print head can also be programmed to create a direct map of the fluid samples from the source plate on the target or to create any desired pattern or print on the target. The tip and print head can be used for a wide variety of applications such as DNA microarraying and compound reformatting. In one preferred embodiment, the tip is used as a capillary or "gravity" pin to draw or collect source fluid and "spot" or deposit the fluid onto the target via physical contact (touch-off). In another preferred embodiment, the tip is used in conjunction with an aspirate-dispense system to actively aspirate source fluid and deposit the fluid via a contact or non-contact approach. The tip provides improved, accurate and repeatable microfluidic transfer.
A method for dispensing precise quantities of reagents is disclosed including the steps of providing positive displacement syringe pump in series with a dispenser, such as a solenoid valve dispenser. The pump is controlled by a stepper motor or the like to provide an incremental quantity or continuous flow of reagent to the dispenser. The dispenser is operated in accordance with predetermined parameters to dispense droplets of reagent onto a target substrate at the metered flow rate.
A method and apparatus for dispensing precise quantities of reagents is disclosed including a positive displacement syringe pump in series with a dispenser, such as an aerosol dispenser or solenoid valve dispenser. The pump is controlled by a stepper motor or the like to provide an incremental quantity or continuous flow of reagent to the dispenser. The pump and dispenser are operated in cooperation with one another such that the quantity and/or flow rate of liquid dispensed by the dispenser can be precisely metered substantially independently of the particular operating parameters of said dispenser to attain a desired flow rate, droplet size or mist quality, droplet frequency and/or droplet velocity.